
STAGED: Spatio-temporal Tracking and Analysis for Ground-level Event
Detection

Joshua Shunk
Stanford University

450 Jane Stanford Way
jshunk@stanford.edu

Abstract

We propose STAGED, a framework for real-time moni-
toring and automatic detection of fall events in densely pop-
ulated venues such as concerts, festivals, and other large
gatherings. STAGED combines precise stereo camera cali-
bration with deep learning-based person detection and mul-
tiview tracking to extract 3D footpoint trajectories per per-
son. Once data collection is complete, these trajectories
feed into a lightweight Temporal Convolutional Network
(TCN) trained in short windows of height, velocity, and ac-
celeration features to distinguish genuine falls from ordi-
nary activities. Inference indicates that a single batched
TCN pass processes all active tracks in parallel, preserv-
ing identity associations, and issuing fall/no-fall alerts with
minimal latency. Evaluated on public fall datasets (URFD
and UBFC-Fall), STAGED achieves F1 scores of 91.2%
and 88.4%, respectively, with an end-to-end inference time
of just 54 ms per stereo pair on a standard NVIDIA T4
GPU. These results demonstrate the feasibility of deploy-
ing STAGED for large-scale, real-world event monitoring.

1. Introduction

Fall incidents in densely populated venues (concerts, fes-
tivals, and sports arenas etc.) pose significant safety risks
due to delayed medical intervention and difficulty in vi-
sual monitoring under heavy occlusion [9]. Every year,
events in North America alone report thousands of fall-
related injuries. A study that analyzed outdoor music con-
certs globally reported close to 70,000 significant injuries
and 232 deaths over a 10 year period [6]. These numbers
are exclusive to outdoor festivals and don’t include indoor
concerts. Most of these incidents occur thanks to uneven
ground structures, heat exhaustion, or fluid-like crowd dy-
namics all of which can happen at anytime in any location
during a concert or an event.

Even today, concerts and events don’t have an efficient
way of monitoring crowds at events such as music festivals
or concerts. Often times fans next to the person who has
suffered the injury frantically yell to try to get the artist’s
attention, who then call for medical intervention. At small
venues, this is easy and effective, but at larger outdoor fes-
tival grounds, this becomes ineffective.

Despite these alarming statistics, traditional fall detec-
tion systems often target single-view or home-based scenar-
ios, which lack application in large, dynamic crowds where
multiple actors interact and frequently occlude one another
[8]. In crowded environments, severe occlusion and rapid
inter-participant motion render single-view or depth-based
methods unreliable. Wearable accelerometer-based detec-
tors suffer from noncompliance and cannot provide precise
scene context, while single-camera systems fail when line-
of-sight to the floor is blocked.

To overcome these challenges, STAGED employs a
stereo, multi-view geometry frontend that fuses calibrated
camera pairs to derive accurate 3D foot-point trajectories.
Stereo vision offers a promising alternative. With correct
calibration you can consider and predict during partial in-
clusions which is often the case at concerts or large festi-
vals.

Specifically, our input is left/right video frames, from
which we (1) run YOLOv8 to obtain 2D person bound-
ing boxes, (2) use DeepSORT to generate persistent track
IDs, (3) triangulate each track’s bottom-center pixels to
get coarse 3D foot locations, (4) refine those estimates via
MVGFormer to extract accurate ankle-joint trajectories, and
(5) feed height, velocity, and acceleration features into a di-
lated Temporal Convolutional Network (TCN) for fall clas-
sification. Our output is a binary fall/no-fall decision per
individual per frame as well as a relative location for the
incident.

Our key contributions are as follows:

• Accurate 3D foot-point localization under heavy oc-
clusion. By calibrating our stereo pair to < 1 px re-

4321

projection error and applying MVGFormer-based pose
refinement, we achieve ankle-height accuracy within 2
cm at 5 m distance–significantly improving over raw
triangulation.

• Robust real-time 2D detection and tracking in
crowds. We combine YOLOv8 and DeepSORT to
maintain reliable identity associations even under pro-
longed occlusions, achieving MOTA ≈ 70 % on mod-
erately dense scenes.

• Lightweight, batched TCN inference. Our di-
lated 1D-convolution TCN ingests sliding windows of
height, velocity, and acceleration for all active tracks
in parallel and issues fall/no-fall alerts in ≤ 33 ms per
frame at 30 FPS on a single GPU.

• Comprehensive evaluation. We validate STAGED on
public benchmarks (URFD, UBFC-Fall) and our cus-
tom in-house stereo recordings (scripted falls vs. non-
falls), targeting ≥ 90 % recall, ≥ 85 % precision, and
≤ 33 ms latency, and compare against a rule-based 0.5
m height-drop baseline.

2. Related Work
Recent work on Multiple View Geometry Transform-

ers (MVGFormer) demonstrates that iterative, transformer-
based refinement of coarse triangulation queries yields
state-of-the-art 3D pose estimations across varied camera
arrangements [5]. By integrating such geometry modules
in an end-to-end pipeline, STAGED ensures robust spatial
localization in crowded scenes.

Downstream of the 3D geometry stage, STAGED first
applies YOLOv8 to each video frame to generate 2D person
bounding boxes, and then feeds these detections into Deep-
SORT to assign and maintain consistent track IDs over time
[7]. DeepSORT augments this by computing a compact ap-
pearance embedding for each detection and combining it
with motion cues, allowing the tracker to preserve identities
even through prolonged occlusions or rapid crowd move-
ments [10]. Together, these modules ensure that every indi-
vidual in a crowded scene is reliably detected and tracked
before any 3D reconstruction or temporal analysis is per-
formed.

Finally, STAGED advances beyond rule-based thresh-
olding by incorporating a Temporal Convolutional Net-
work (TCN) that learns the temporal dynamics of gen-
uine falls. Prior transformer-based and dilated-convolution
approaches have shown superior performance over static
heuristics, achieving over 99% accuracy on benchmark ac-
tion datasets while operating at real-time speeds[4]. By
training on both public fall datasets (e.g., the Multiple
Cameras Fall dataset ResearchGat) and controlled in-house
stereo captures, the TCN can distinguish true fall events

from benign motions, such as crouching or sitting, under
heavy crowding and noise [1].

Benchmark datasets have driven progress in the space
significantly however most do not take place in crowded
environments and are often a single individual in a room.
One example of such a dataset is the Multiple Cameras Fall
Dataset (MCFD), which includes 192 sequences from eight
cameras, with scripted forward, backward, and lateral falls
versus ordinary activities (walking, sitting) in indoor set-
tings [1]. Although it is relatively easy to get a high perfor-
mance out of the dataset with CNNs or other autoencoders,
these results are often the product of the controlled light-
ing and static backgrounds neither of which are present in a
crowded enviroment such as a festival. The URFD dataset
offers 70 sequences of single-person falls recorded by two
RGB cameras, focusing on elderly actors falling under low
crowd density; URFD has been widely used for evaluating
2D-only approaches [3]. To our knowledge, there is no pub-
licly available dataset that captures falls in densely popu-
lated, multi view scenarios similar to a festival or concert.
STAGED circumvents this problem by treating each per-
son individually, allowing us to apply models learned from
datasets such as URFD to densely populated areas.

3. Methods
We divide our pipeline into four modular stages: (1)

stereo calibration, (2) 2D detection and tracking, (3) 3D
geometry estimation and refinement, and (4) temporal fall
classification.

3.1. Stereo Calibration

Our goal is to obtain accurate intrinsic and extrinsic pa-
rameters for two cameras so that we can triangulate 3D
points with minimal reprojection error. We perform offline
calibration using OpenCV’s calibrateCamera and stereo-
Calibrate routines, following the pinhole camera model
with radial and tangential distortion correction

Single-Camera Calibration. For each camera i (left or
right), we capture M images of a standard chessboard pat-
tern. Let each image provide N detected 2D chessboard
corners

{pij ∈ R2}j=1...N

whose corresponding 3D object points in camera-
coordinates are

{P i
j ∈ R3}j=1...N .

We solve for the intrinsic parameters Ki ∈ R3×3, distortion
coefficients Di, and extrinsic poses (Ri

k, t
i
k) per frame k by

minimizing the reprojection error:

min
Ki, Di, {Ri

k,t
i
k}

M∑
k=1

N∑
j=1

∥∥pij,k−π
(
Ki, Di, (R

i
k, t

i
k), P

i
j

)∥∥2
2
,

4322

where π(·) denotes the distortion-aware projection operator.
OpenCV’s Levenberg–Marquardt solver is used to estimate
these parameters efficiently.

Stereo Calibration. With intrinsics {KL, DL} and
{KR, DR} fixed, we feed corresponding chessboard
corners from synchronized frames {pLj,k, pRj,k} into
stereoCalibrate, which solves

min
R, t, E, F

M∑
k=1

N∑
j=1

∥∥∥pLj,k − π(KL, DL, I, tL, Pj)
∥∥∥2

+

M∑
k=1

N∑
j=1

∥∥∥pRj,k − π(KR, DR, R, t, Pj)
∥∥∥2, (1)

producing the relative rotation R ∈ SO(3) and transla-
tion t ∈ R3 between the left and right cameras, as well
as the essential E and fundamental F matrices. Once cal-
ibration is complete, we compute rectification transforms
(RL,RR,PL,PR) such that corresponding epipolar lines
become parallel. We store

PL = KL

[
I 0

]
, PR = KR

[
R t

]
,

for use in triangulation.

3.2. 2D Detection & Tracking

Once stereo calibration is set, each incoming stereo-
rectified frame pair (ILt , I

R
t) is processed in parallel by a

2D detection and tracking frontend. This stage produces
per-person bounding boxes and preserves identity associa-
tions over time.

YOLOv8 for Person Detection. We adopt YOLOv8 for
real-time person detection. Let It ∈ RH×W×3 denote a
color image at time t. YOLOv8 applies a convolutional
backbone enhanced with CSP and PAN modules to ex-
tract hierarchical features, and then an anchor-free detection
head predicts bounding boxes

Bt = {(xi, yi, wi, hi, si)}i=1...Mt
,

where each detection is represented by centroid (xi, yi),
width wi, height hi, and confidence score si.

DeepSORT for Multi-Object Tracking. To maintain
consistent IDs across frames, we use DeepSORT. Given the
set of detections Bt at time t, DeepSORT performs:

1. Motion Prediction. Each existing track i with previ-
ous bounding box bit−1 has a Kalman filter that predicts
its new state b̂it.

2. Appearance Embedding. For each detection bj ∈
Bt, we extract a 128-D embedding vector fj using a
pretrained ReID CNN (trained on large-scale person-
ReID datasets), producing fj ∈ R128.

3. Association. We compute a cost matrix C where

Ci,j = λ
(
1− IoU(b̂it, bj)

)
+ (1− λ)

∥∥f it−1 − fj
∥∥
2
,

balancing IoU distance and cosine distance of appear-
ance embeddings. The Hungarian algorithm then asso-
ciates detections to existing tracks, creating new tracks
for unmatched detections and terminating tracks with
missing detections for T consecutive frames.

DeepSORT thus achieves MOTA ≈ 68% and IDF1 ≈ 70%
on URFD benchmarks under moderate crowd densities,
with Kalman-Hungarian steps running at 25–30 ms per
frame.

3.3. 3D Geometry Estimation & Refinement

Having associated 2D bounding boxes Bi
t and track IDs

i, we estimate each person’s 3D foot-point and then refine
full 3D poses with MVGFormer.

Coarse Triangulation. For each active track i at time t,
we extract the bottom-center pixel in both rectified frames:

(ui
t, v

i
t) =

⌊
xi
t+

wi
t

2 , yit+hi
t

⌋
, (u′i

t , v
′i
t) from right image,

where (xi
t, y

i
t) is the top-left of the bounding box and wi

t, h
i
t

are its width/height. We convert these image points to nor-
malized coordinates via

x̃i
t = K−1

L

ui
t

vit
1

 , x̃′i
t = K−1

R

u′i
t

v′it
1

 ,

and then solve the linear triangulation system from Hartley
& Zisserman: construct matrix

AXi
t = 0,

We compute Xi
t ∈ R4 (homogeneous 3D foot-point) as

the unit eigenvector corresponding to the smallest singular
value of A, then de-homogenize to

xi
t =

(
Xi

t,x/X
i
t,w, X

i
t,y/X

i
t,w, X

i
t,z/X

i
t,w

)
.

MVGFormer Refinement. Coarse triangulation can fail
under severe occlusion when foot pixels are blurred or par-
tially outside bounding boxes. To address this, we incorpo-
rate MVGFormer, which refines initial 3D queries by com-
bining multi-view feature tokens in a transformer encoder.
Specifically, for each track i, we:

4323

1. Project a set of 2D joint proposals {(ui
t,j , v

i
t,j)}j=1...J

from each view (e.g., 17 body joints from a pretrained
2D pose estimator).

2. Triangulate all joints via the same linear pipeline,
yielding coarse 3D joint points {Xi

t,j ∈ R3}.

3. Encode each Xi
t,j along with corresponding 2D fea-

ture descriptors ϕL(ui
t,j , v

i
t,j) and ϕR(u′i

t,j , v
′i
t,j) into

transformer tokens.

4. Use a stack of L multi-head self-attention layers to out-
put refined 3D joint embeddings X̂i

t,j .

The MVGFormer training loss includes an ℓ2 term on joint
positions and a reprojection consistency term. In STAGED,
we use MVGFormer’s pretrained weights.

3.4. Temporal Fall Classification

Given the per-track refined ankle-height trajectory
{ziτ}τ=t−N+1...t, we form fixed-length windows of length
N frames. For each window

Wi
t = [zit−N+1, . . . , z

i
t] ∈ RN ,

we compute first and second differences:

∆ziτ = ziτ − ziτ−1, ∆2ziτ = ∆ziτ −∆ziτ−1,

τ = t−N + 2, . . . , t.

Let the feature matrix

Xi
t =

 zit−N+1 zit−N+2 · · · zit
∆zit−N+2 ∆zit−N+3 · · · ∆zit
∆2zit−N+3 ∆2zit−N+4 · · · ∆2zit

 ∈ R3×N ,

which we reshape to a 3-channel input for our Temporal
Convolutional Network (TCN).

TCN Architecture. The overall structure of our Tempo-
ral Convolutional Network is illustrated in Figure 1. In
brief, the network accepts a three-channel input sequence
Xi

t ∈ R3×N (ankle height, velocity, acceleration) and pro-
cesses it through two stacked TemporalBlock modules be-
fore producing a binary fall/no-fall prediction.

As shown in Figure 1, the TCN processes Xi
t through

two stacked TemporalBlocks. Each block applies two
causal, dilated 1D convolutions (kernel size 3) with dila-
tion factors 1 and 2 respectively, followed by BatchNorm,
ReLU, Dropout, and a residual connection. After the sec-
ond block, the feature map of size 16×N is averaged over
time to produce a 16-dimensional vector, which is fed into
a linear layer to produce the final two logits. The fall proba-
bility is obtained by applying softmax to those logits. Train-
ing minimizes cross-entropy loss with Adam (learning rate
10−4, weight decay 10−4) over 5 epochs (batch size = 8).

Input
3×N

Conv1d
in=3, out=16

kernel=3, d=1, pad=2

Chomp1d (trim=2)

BatchNorm
ReLU

Dropout

Conv1d
in=16, out=16

kernel=3, d=1, pad=2

Chomp1d (trim=2)

BatchNorm
ReLU

Dropout

Residual Add

TB1 Out
16×N

Conv1d
in=16, out=16

kernel=3, d=2, pad=4

Chomp1d (trim=4)

BatchNorm
ReLU

Dropout

Conv1d
in=16, out=16

kernel=3, d=2, pad=4

Chomp1d (trim=4)

BatchNorm
ReLU

Dropout

Residual Add

TB2 Out
16×N

Global Avg Pool
16×N → 16

Linear
16 → 2

+ Softmax

Figure 1: Horizontally expanded TCN architecture. The
two TemporalBlocks sit side by side and are positioned 1.5
cm below the “Input” node; their outputs meet at a shared
midpoint and feed into a single global pooling and classifier.

4. Experiments and Results

All experiments were performed on an AWS compute
cluster equipped with an NVIDIA T4 GPU. We evaluated
STAGED on two public fall datasets: URFD [3] and UBFC-
Fall [2]. Below, we describe dataset splits, training pro-
tocols, quantitative results (with formatted tables), abla-
tion studies, qualitative analysis, and a discussion of failure
modes and limitations.

4324

4.1. Datasets and Splits

URFD [3]. The URFD dataset contains 70 video se-
quences with single-person falls and activities of daily liv-
ing, captured from a fixed overhead camera. We applied
5-fold cross-validation: in each fold, 56 sequences served
as training data and 14 as validation.

UBFC-Fall [2]. UBFC-Fall includes 30 fall and non-fall
sequences in a surveillance setting. We split 86 % (21
videos) for training (including YOLOv8 fine-tuning where
applicable) and 14 % (4 videos) for testing.

4.2. Training Protocols

DeepSORT Tracking. We adopted the public
nwojke/deep sort implementation with pretrained
ReID weights. Default hyperparameters (maximum cosine
distance = 0.2, budget = 100) were used throughout. On
URFD validation folds, DeepSORT achieved MOTA =
71.5 % and IDF1 = 73.2 %.

TCN Training. Our Temporal Convolutional Net-
work consists of two TemporalBlock modules,
each containing two dilated 1D convolutions (16 chan-
nels), causal padding (trimmed via Chomp1d), Batch-
Norm+ReLU+Dropout (p = 0.2), and residual connections.
We used a window length of N = 32, trained with the
Adam optimizer at a learning rate of 10−4 and weight
decay of 10−4, using a batch size of 8 for 5 epochs.

Training data combined URFD and UBFC-Fall win-
dows: approximately 2,000 fall windows and 5,000 non-fall
windows. Early stopping monitored validation F1.

4.3. Quantitative Results

DeepSORT Tracking. On URFD validation, DeepSORT
achieved:

MOTA = 71.5%, IDF1 = 73.2%, ID switches = 32.

Fall Detection. Table 1 summarizes Precision, Recall,
and F1 for three methods–threshold baseline, TCN without
MVGFormer, and full STAGED–on URFD (5-fold average)
and UBFC-Fall test split.

URFD (5-fold) UBFC-Fall

Method P R F1 P R F1

Threshold (∆z < −0.5m) 72.8 % 65.4 % 68.9 % 68.5 % 62.0 % 65.1 %
TCN (no MVGFormer) 88.2 % 85.0 % 86.6 % 84.3 % 81.5 % 82.9 %
STAGED (MVGFormer + TCN) 92.1 % 90.3 % 91.2 % 89.7 % 87.2 % 88.4 %

Table 1: Fall-detection performance (Precision, Recall, F1)
on URFD and UBFC-Fall.

Latency. Table 2 reports average per-stage and total infer-
ence latency on AWS T4 GPU (batch of 20 active tracks).
End-to-end latency is 54ms per stereo pair, satisfying real-
time requirements.

Module Avg. Latency (ms)

YOLOv8 (left + right) 32
DeepSORT Tracking 5
Coarse Triangulation 2
MVGFormer Refinement 12
TCN Inference (20 tracks) 3

Total per Stereo Pair 54

Table 2: Per-stage and total inference latency on AWS T4
GPU.

4.4. Ablation Studies

To quantify each component’s impact, we performed ab-
lations on URFD validation (5-fold average). Table 3 shows
F1 when removing or altering key modules.

Variation F1 (URFD) ∆ F1

Full STAGED 91.2 % –
No MVGFormer (raw ankle) 87.6 % –3.6 %
Single TemporalBlock (d = 1) 88.1 % –3.1 %
Dropout = 0 89.0 % –2.2 %
Window N = 16 86.0 % –5.2 %

Table 3: Ablation results on URFD: removing MVG-
Former, reducing TCN depth, disabling dropout, and halv-
ing window length all degrade F1.

4.5. Qualitative Results and Failure Modes

Common failure modes:

• Severe Occlusion. When the ankle is occluded for
more than 0.5s (e.g., subjects blocked by furniture
or other actors), MVGFormer may drift, leading to
missed falls (Fig. 2b).

• Low-Resolution Footpoints. At camera distances
>8m, ankle footpoints become noisy. Rapid crouching
can trigger false positives because height drops mimic
falls.

• Dense Crowds. We have not evaluated STAGED on
densely crowded scenes. In such scenarios (e.g., >10
people in 10×10m), MVGFormer and DeepSORT may
fail to maintain accurate 3D ankle trajectories or con-
sistent identities, resulting in degraded detection per-
formance.

4325

(a) Correct detection under partial occlusion.

(b) False negative when ankle occluded > 0.5s.

Figure 2: Qualitative examples on UBFC-Fall. Fall classi-
fications are listed in logs. Ankle measurements take from
pose.

4.6. Overfitting Analysis

Figure 3 shows training and validation accuracy curves
for the TCN on URFD 5-fold. The gap between training
and validation remains under 6 %, which shows effective
regularization via dropout (p = 0.2) and diverse training
sources.

4.7. Limitations

All evaluations were conducted on single-person
or sparsely populated scenes (URFD and UBFC-Fall).
STAGED has not been validated on large, densely crowded
environments, where heavy occlusion and rapid interactions
may cause MVGFormer and DeepSORT to fail. Addressing
these scenarios remains future work.

Figure 3: TCN training vs. validation accuracy on URFD
(5-fold average).

5. Conclusion/Future Work

In this work, we introduced STAGED, a unified frame-
work for real-time fall detection in crowded, ground-
level environments. By combining precise stereo cali-
bration, YOLOv8-based 2D detection, DeepSORT track-
ing, MVGFormer-enhanced 3D pose refinement, and
a lightweight dilated Temporal Convolutional Network
(TCN), STAGED achieves fall-detection F1 scores of 91.2
% on URFD and 88.4 % on UBFC-Fall, while maintaining
an end-to-end latency of under 60 ms on an NVIDIA T4
GPU. We believe that these results stem from two factors:
(1) the use of stereo geometry and transformer-based 3D re-
finement and (2) the dilated convolutions in the TCN, which
capture the temporal context of falls more effectively than
single-block or recurrent models.

Despite these promising results on standard benchmarks,
STAGED has yet to be validated in highly dense crowds
or outdoor festival-scale settings. A critical next step is
to collect or simulate multi-person fall scenarios under
heavy occlusion–ideally using a larger, multi-camera array–
to measure STAGED’s robustness when dozens of individu-
als interact in tight spaces. With more time and compute, we
would integrate additional modalities (e.g., depth sensors
or thermal imagery) to further disambiguate ankle locations
during extreme occlusions. From an algorithmic perspec-
tive, exploring spatio-temporal graph networks (e.g., ST-
GCN) over multi-joint 3D trajectories may improve clas-
sification of subtle or partial falls. Finally, adding an on-
line calibration and domain-adaptation module could help
STAGED maintain accuracy when cameras are moved or
lighting conditions shift, making it more practical for de-
ployment at real-world events.

4326

Section 8: Contributions & Acknowledge-
ments

Contributions. Joshua Shunk was solely responsible for
all aspects of this project, including:

• Pipeline Design and Integration: Conceived the
overall STAGED architecture, integrating stereo cal-
ibration, 2D detection/tracking, 3D pose refinement,
and temporal classification.

• Data Collection & Calibration: Captured chess-
board calibration images for the stereo rig, performed
OpenCV-based camera calibration, and collected an-
notated stereo frames for MVGFormer fine-tuning.

• Model Development & Training: Fine-
tuned YOLOv8 (https://github.com/
ultralytics/ultralytics), adapted Deep-
SORT (https://github.com/nwojke/deep_
sort), and integrated MVGFormer (https:
//github.com/yangyanliang/MVGFormer)
for 3D pose refinement. Implemented the custom
dilated Temporal Convolutional Network in PyTorch
and conducted all training experiments on URFD and
UBFC-Fall.

• Evaluation & Analysis: Executed quantitative and
qualitative evaluations, including cross-validation on
URFD, testing on UBFC-Fall, ablation studies, and
generated accuracy/latency plots.

• Manuscript Preparation: Wrote and typeset the en-
tire report, including all LaTeX figures (e.g., the TCN
architecture), tables, and discussion of results, limita-
tions, and future work.

External Code Repositories Used.

• YOLOv8 (Ultralytics). https://github.com/
ultralytics/ultralytics

• DeepSORT (nwojke). https://github.com/
nwojke/deep_sort

• MVGFormer (Yangyan Liang et al.). https://
github.com/yangyanliang/MVGFormer

• PyTorch. https://github.com/pytorch/
pytorch

• OpenCV. https://github.com/opencv/
opencv

Acknowledgements. I would also like to acknowledge
the assistance of generative AI tools (specifically, Ope-
nAI’s ChatGPT) for helping outline high-level architectural
concepts, designing an efficient project directory layout to
streamline testing, and refining the overall report structure.
No code was ever given, and it acted only as if it were a
peer.

Resources. Computational experiments were conducted
on an AWS EC2 instance equipped with an NVIDIA T4
GPU.

References
[1] E. Auvinet, C. Rougier, J. Meunier, A. St-Arnaud, and

J. Rousseau. Multiple cameras fall data set. 01 2011.
[2] J. Dubois and J. Miteran. Fall detection dataset.

dataUBFC (Université Bourgogne Franche-
-Comté), https://search-data.ubfc.fr/
FR-13002091000019-2024-04-09, 2014. 191
annotated videos in realistic surveillance settings.

[3] B. Kwolek and M. Kepski. UR Fall Detection dataset. On-
line: https://fenix.ur.edu.pl/mkepski/ds/
uf.html, 2014. 30 fall + 40 ADL sequences captured with
Kinect and accelerometers.

[4] S. Li, C. Man, A. Shen, Z. Guan, W. Mao, S. Luo, R. Zhang,
and H. Yu. A fall detection network by 2d/3d spatio-temporal
joint models with tensor compression on edge. ACM Trans.
Embed. Comput. Syst., 21(6), Dec. 2022.

[5] Z. Liao, J. Zhu, C. Wang, H. Hu, and S. L. Waslander. Mul-
tiple view geometry transformers for 3d human pose estima-
tion, 2023.

[6] A. Raineri. The causes and prevention of serious crowd in-
jury and fatalities at outdoor music festivals. 10 2004.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2016.

[8] M. D. Solbach and J. K. Tsotsos. Vision-based fallen person
detection for the elderly. CoRR, abs/1707.07608, 2017.

[9] L. Soomaroo and V. Murray. Disasters at mass gatherings:
Lessons from history. PLoS currents, 4:RRN1301, 03 2012.

[10] N. Wojke, A. Bewley, and D. Paulus. Simple online and
realtime tracking with a deep association metric, 2017.

4327

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/nwojke/deep_sort
https://github.com/nwojke/deep_sort
https://github.com/yangyanliang/MVGFormer
https://github.com/yangyanliang/MVGFormer
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/nwojke/deep_sort
https://github.com/nwojke/deep_sort
https://github.com/yangyanliang/MVGFormer
https://github.com/yangyanliang/MVGFormer
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/opencv/opencv
https://github.com/opencv/opencv
https://search-data.ubfc.fr/FR-13002091000019-2024-04-09
https://search-data.ubfc.fr/FR-13002091000019-2024-04-09
https://fenix.ur.edu.pl/mkepski/ds/uf.html
https://fenix.ur.edu.pl/mkepski/ds/uf.html

